
96

Programming Concepts

After completing this chapter, you will be able to

! understand the use of variables and the various ways to change their values
! trace the logical flow of a program using pseudo code
! identify the values of variables during execution of a program flowchart or a

program segment
! recognise the basic constructs of a computer program, including branching,

conditional and iteration statements

In this chapter, you will learn basic programming concepts, such as arithmetic
operations and logic flow of a program. In order to avoid dealing with the
intricacies of a real programming language, you will learn programming
concepts through a pseudocode, which is a condensed form of English.

Fig.1 Programming concept

Chapter 16 Programming Concepts

97

○ ○

16.1 Variables and Expressions

A. Variables

When a program is running, the contents of certain memory locations are
changed. These memory locations are identified by variable names. A vari-
able may hold data like, a number, a constant, a string of characters etc.

An assignment statement assigns a value to a variable. It would over-
write the previous content of the variable. In this book, we use an arrow
symbol “←” to assign a value to a variable on its left side. The corresponding
symbol is “:=” in PASCAL and “=” in other languages, like C and BASIC.

The format of an assignment statement is

variable ← {value or expression}

Table 1 shows some examples of assignment statements:

Common data types are
1. numeric
2. character

A variable is a memory
location that holds data.
An assignment statement
assigns value to a variable,
overwriting its contents.

Assignment statement Description

1. X ← 5 An integer 5 is placed in variable X.

2. Y ← 2.5 A real number 2.5 is placed in variable
Y.

3. name ← "Peter" A string "Peter" is placed in variable
name.

Common data includes two types: numeric and character. Numeric data,
which can be an integer or a real number, are used for calculation. Examples
are 2, -3, 5.2, 0.0006. Character data, which are placed inside quotes, are
used to show messages or other contents. Anything that can be typed using the
keyboard can be a character. Examples of character data are “A”, “2.3”,
“Peter”.

Table 1 Examples of assignment statements

Basic Programming Concepts

98

○ ○

2. Arithmetic Operations

Arithmetic operations include addition (+), subtraction (-), multiplication
(*) and division (/). Consider the following examples:

Computers perform
multiplication and
division before addition
and subtraction.

The calculation on the right hand side of the arrow is called an expres-
sion. The computer evaluates the expression and places the result to the
variable on the left side.

C. Order of Precedence

A computer always follows the proper order of precedence as we do
mathematics. It means that multiplication and division are performed before
addition and subtraction. Consider the following examples:

Statements Results

1. X ← 5 + 8 X stores 13

2. X ← 5 - 7 X stores -2

3. X ← 3 * 2 X stores 6

4. X ← 8 / 2 X stores 4

5. X ← 5 / 2 X stores 2.5

Table 2 Examples of arithmetical expressions

Statements Results

1. X ← 4 * 2 + 3 Since 4 * 2 is equal to 8, the statement becomes
 X ← 8 + 3. Hence, X stores 11.

2. X ← 4 + 2 * 3 Multiplication is performed before addition.
Since 2 * 3 is equal to 6, the statement becomes
X ← 4 + 6. Hence, X stores 10.

3. X ← 4 * 2 / 8 Since 4 * 2 is equal to 8, the statement becomes
X ← 8 / 8. Hence, X stores 1.

4. X ← 4 + 8 / 4 Division is performed before addition.
Since 8 / 4 is equal to 2, the statement becomes
X ← 4 + 2. Hence, X stores 6.

5. X ← 3 * 7 - 2 / 5 Multiplication and division are performed before
subtraction.
The statement becomes X ← 21 - 0.4. Hence, X
stores 20.6.

Table 3 Order of precedence

Chapter 16 Programming Concepts

99

○ ○

Operations inside a pair of parentheses are performed first. Consider the
following examples:

D. More Complex expressions

Sometimes, an expression may include one or more variables. Suppose X
stores 5 and Y stores -3 before execution.

Statements Results

1. X ← 7 - (2 + 3) The statement becomes X ← 7 - 5. Hence, X
stores 2.

2. X ← (-2 * 5) + 6 The statement becomes X ← -10 + 6. Hence, X
stores -4.

3. X ← 3 * (-2 - 3) The statement becomes X ← 3 * (-5). Hence,
X stores -15.

Table 4 Expressions inside parenthesis are performed first

Statements Results

1. X ← X + 2 The statement becomes X ← 5 + 2. Hence, X stores 7.

2. X ← Y * 2 The statement becomes X ← (-3) * 2. Hence, X stores -6.

3. Y ← X * Y + Y The statement becomes Y ← 5 * (-3) + (-2).
Hence, Y stores -17.

4. X ← Y * 2
Y ← X + Y

The first statement becomes X ← (-3) * 2, i.e. X stores -6. The
second statement becomes Y ← -6 + (-3). Hence, Y stores -9
and X stores -6.

5. X ← X + Y
Y ← X + Y

The first statement becomes X ← 5 + (-3), i.e. X stores 2. The
second statement becomes Y ← 2 + (-3). Hence, Y stores
-1 and X stores 2.

Table 5 Examples of assignment statements with more than one variable

Basic Programming Concepts

100

○ ○

E. String concatenation

String concatenation means to join two strings of characters together. The
operator is “+”.

Statements Results

1. A ← "2" + "3" A stores "23".

2. A ← "Hi" + "!" A stores "Hi!".

3. A ← "Pet" + "er Pan" A stores "Peter Pan".

Suppose the variable A stored �3�, B stored �27� and C stores �Peter�.

Table 6 String concatenation

Statements Results

1. X ← A + "2" The statement becomes X ← "3" + "2". Hence, X
stores "32".
Note: Contents of A remains unchanged

2. X ← "2" + A The statement becomes X ← "2" + "3". Hence, X
stores "23".

3. X ← A + A + A The statement becomes X ← "3" + "3" + "3". Hence,
X stores "333".

4. X ← A + B The statement becomes X ← "3" + "27". Hence X
stores "327".

5. C ← C + B The statement becomes C ← "Peter" + "27". Hence
C stores "Peter27".

Table 7 More examples on string concatenation

The following statement is not allowed:

X ← "A" + 2

because the operation between a string and a number is meaningless.

Operation between a
string and a number is
meaningless.

Chapter 16 Programming Concepts

101

○ ○

16.2 Input and Output Statements

A. Input Statement

An input statement obtains input from user and store the data in a
variable. For example,

INPUT X

is an input statement. When the user types 2.5 on the keyboard, this value will
be stored in X.

The format of the input statement is

INPUT {variable}

An input statement
allows user to change
the value of a variable
interactively.

An output statement
puts the value on the
screen.

Statements Results

1. OUTPUT X The output is 3

2. OUTPUT 2 * 4 + 5 The output is 13.

3. OUTPUT 2 * X + 4 The computer will evaluate 2 * 3 + 4.
The output is 10.

Table 8 Examples of output statements

B. Output Statement

An output statement would put the values on the screen. For example,

OUTPUT 2.5 * 2

will put the product of 2.5 and 2, i.e. 5 on the screen.

The format of the output statement is

OUTPUT {expression}

In the following examples, assume X stores 3.

Basic Programming Concepts

102

○ ○

Lines 30 to 50 are to interchange (or swap) the contents of X and Y.
Suppose the inputs are 3, 6. After line 30, a copy of X is stored in Z. So, Z
stores 3. After line 40, the value of Y is copied to X. So, X stores 6. After line
50, the value of Z is copied to Y. So, Y stores 3. See the illustration below.
The outputs of the above program will be 6, 3.

Example 2 The following program segment will interchange the
contents of two input data

Example 1 The following program segment will find the area of
a triangle.

If the user inputs 5 and 4 in response to lines 10 and 20
respectively, the output would be 10.

Initial values

30 Z ← X

40 X ← Y

50 Y ← Z

X

X

X

X

Y

Y

Y

Y

Z

Z

Z

Z

3

3

6

6

66

6

3

3

33

Swap X and Y

10 INPUT X

20 INPUT Y

30 Z ← X
40 X ← Y
50 Y ← Z
60 OUTPUT X

70 OUTPUT Y

}
Input X, Y

Output X, Y

Swap X and Y

START

END

Input X, Y

Output X, Y

START

END

Z X
X Y
Y Z

10 INPUT HEIGHT

20 INPUT BASE

30 AREA ← HEIGHT * BASE / 2
40 OUTPUT AREA

height

base

1
area = height base

2
� �

Fig.2 Calculating the area of a triangle

Fig.3 Swapping two variables

Fig.4 Swapping two variables X and Y

Chapter 16 Programming Concepts

103

○ ○

16.3 Conditional Statements

A conditional statement will carry out an action if a specific condition is
satisfied. It enables a program to select from one or more alternatives. The
flowchart in Fig.5 is called a selection control structure.

The format of a conditional statement can be

A conditional statement
can be IF...THEN...ELSE...
ENDIF
or
IF...THEN...ENDIF

The result of the conditional expression is
either true or false. If the result is true then “Ac-
tion 1” will take place. Otherwise, “Action 2” will
take place. The action may consist of more than
one statement.

Example 3 The following program segment would assign a
different value to Y depending on the input
value.

If the user enters a positive
number, such as 5 or 12, in response
to the input statement, the value of Y
would be 6. If the user enters 0 or a
negative number, such as -5 or -12,
the value of Y would be -10.

IF {conditional expression} THEN
{action 1}

ELSE
{action 2}

END IF

condition
satisfied?

yesno

Action 1Action 2

Input X

START

END

X > 0 ?

yesno

Y 6Y -10

10 INPUT X

20 IF X > 0 THEN

30 Y ← 6
40 ELSE

50 Y ← -10
60 END IF

Fig.5 Selection control structure with two alternatives

Fig.6 Selection based on the sign of X

Basic Programming Concepts

104

○ ○

A. Relational Operators

The symbol “>” in the conditional expression of the above example
means “greater than”. It is called a relational operator. Other relational
operators are “=”, “>=”, “<=”, “<“, “<>”

Example 4 The following program segment has the same effect as
Example 3.

When the input is less than or
equal to zero, the value of Y would
be -10. When the input is greater
than 0, the value of Y would be 6.

Example 5 The following program segment will put the largest
input into Z.

When the user inputs 5 and 8, the
condition in line 30 is not satisfied.
Therefore, the action in line 60 will take
place, i.e. Z ← Y. Thus, Z would store 8
which is the largest of the inputs.

Relational operator Meaning
= equal to

<> not equal to
> greater than
< less than

>= greater than or equal to
<= less than or equal to

Input X, Y

START

END

X > Y ?

yesno

Z XZ Y

10 INPUT X

20 IF X <= 0 THEN

30 Y ← -10
40 ELSE

50 Y ← 6
60 END IF

10 INPUT X

20 INPUT Y

30 IF X > Y THEN

40 Z ← X
50 ELSE

60 Z ← Y
70 END IF

Input X

START

END

X <= 0 ?

yesno

Y 6 Y -10

Fig.7 Selection based on the sign of X

Fig.8 Selection based on the relative values of X and Y

Table 9 Relational operators

Chapter 16 Programming Concepts

105

○ ○

B. Conditional statements with One Alternative

The format of a conditional statement can also be

If the result of the conditional expression is true,
then action 1 will take place. Otherwise, no action will
take place.

Example 7 The following program segment will input two
data and arrange them in ascending order.

In line 30, the computer compares the contents of X
and Y. If X is greater than Y, the actions in lines 40 to 60
will take place, i.e. the values of X and Y will be
interchanged, giving the result X smaller than Y.

The “-” in line 30 is called an unary operator and
changes the sign of the variable X. It is equivalent to

When the input is less than zero, e.g. -5, it would be
multiplied by -1, giving 5.

Example 6 The following program segment will output the
absolute value of the input data, i.e. the magni-
tude of the input.

condition
satisfied?

yes

no
Action

IF {conditional expression} THEN
{action 1}

END IF

Input X

Output X

START

END

X < 0 ?

yes

no
X -X

10 INPUT X

20 IF X < 0 THEN

30 X ← -X
40 END IF

50 OUTPUT X

30 X ← -1 * X

Input X, Y

Output X, Y

START

END

X > Y ?

yes

no

Swap X and Y

10 INPUT X
20 INPUT Y
30 IF X > Y THEN
40 Z ← X
50 X ← Y
60 Y ← Z
70 END IF
80 OUTPUT X
90 OUTPUT Y

Fig.9 Selection control structure with one alternative

Fig.10 Finding absolute value

Fig.11 Sorting in ascending order for 2 numbers

Basic Programming Concepts

106

○ ○

C. Boolean Operators

As mentioned above, a conditional expression gives either true or false.
We say that the result is a Boolean value.

Sometimes, the result depends on more than one condition. For example,
you will buy something if you want that thing and you have enough money.
Both conditions must be satisfied. In this example, two Boolean values inter-
act to give a new Boolean value. The “AND” is called a Boolean operator.
Other Boolean operators are “OR” and “NOT”.

The result of the AND is governed by the following truth table. Suppose p
and q represent two Boolean values.

Example 8 The following program segment will assign 1 to Z
when both inputs are positive. Otherwise, 0 will be
assigned to Z.

In example 8, suppose the input data are 5 and -4. The computer will
determine the result of each relational operation and then use line 3 of Table 9
to determine the final result. Since the table returns a false value, Z will be
assigned with 0.

10 INPUT X

20 INPUT Y

30 IF X > 0 AND Y > 0 THEN

40 Z ← 1
50 ELSE

60 Z ← 0
70 END IF

Input X, Y

START

END

X > 0 and
Y > 0 ?

yesno

Z 1Z 0

p q p AND q
1. false false false
2. false true false
3. true false false
4. true true true

Fig.12 Testing positive for both numbers

Table 10 Truth table for AND operator.

Chapter 16 Programming Concepts

107

○ ○

If the user enters 5 and -4, the first
condition is true but the second condition is
false. The computer will use line 3 of Table
10 to determine the final result. Since the
table returns a true value, Z will be assigned
with 1.

Example 9 The following program segment will assign 1 to Z when
either input is positive. Otherwise, 0 will be assigned to Z.

Example 10 The following program segment will assign 1 to Z when
the inputs are not equal. Otherwise, 0 will be assigned
to Z.

Line 30 is equivalent to

p q p OR q
1. false false false
2. false true true
3. true false true
4. true true true

Table 11 Truth table for OR
operator.

10 INPUT X
20 INPUT Y
30 IF X > 0 OR Y > 0 THEN
40 Z ← 1
50 ELSE
60 Z ← 0
70 END IF

Input X, Y

START

END

X > 0 or
Y > 0 ?

yesno

Z 1Z 0

p NOT p
1. false true
2. true falseTable 12 Truth table for NOT

operator.

Input X, Y

START

END

NOT (X = Y) ?

yesno

Z 1Z 0

10 INPUT X
20 INPUT Y
30 IF NOT (X = Y) THEN
40 Z ← 1
50 ELSE
60 Z ← 0
70 END IF

30 IF X <> Y THEN

Fig.13 Testing for at least one positive

Fig.14 Testing for equality

Basic Programming Concepts

108

○ ○

10 X ← 0
20 X ← X + 1
30 GOTO 20

16.4 Branching Statement

A branching statement will change the sequence
of execution. It is implemented by a GOTO command. The
format of the branching statement is

GOTO {line number}

A branching statement
changes the sequence of
execution.

Consider the following example:

A branching statement should be used with a
conditional statement. Consider the following example:

Action to
repeat

This program will never stop. The computer will
keep on add 1 to X so that X takes on values 0, 1, 2,
successively. We say that the program falls into an
infinite loop. There will be no response from the
computer until the program is manually stopped.

START

X 0

X X + 1

In this program, if the computer finds that the
input data is negative (X < 0), it would request for input
again. This ensures that a number greater than or equal
to zero is entered from the keyboard.

yes

no

Input X

START

END

X < 0 ?

10 INPUT X
20 IF X < 0 THEN
30 GOTO 10
40 END IF
50 OUTPUT X

Fig.15 Branching (infinite loop)

Fig.16 An example of infinite loop

Fig.17 Conditional branching

Chapter 16 Programming Concepts

109

○ ○

Example 11 The following program segment will increase the values
of X for a number of times.

After the 1st encounter of line 20, X
stores 1. Since the condition in line 30 is
satisfied, the computer will branch to line 20
again. This will repeat until X is equal to 3.

Thus, output from the program is 3.

Since line 20 is executed for three times, we say that there are three
iterations. An iteration means repeating a sequence of instructions once. We
shall learn some constructs designed to carry out iterations for a specified
number of times.

10 X ← 0
20 X ← X + 1
30 IF X < 3 THEN
40 GOTO 20
50 END IF
60 OUTPUT X

yes

Output X

END

X < 3 ?

no

X 0

X X + 1

START

After executing line 30 Result of X Condition in line 30 Action

1st time 1 satisfied (1 < 3) GOTO 20

2nd time 2 satisfied (2 < 3) GOTO 20

3rd time 3 not satisfied (3 = 3) OUTPUT X

Fig.18 Iteration for three times

Basic Programming Concepts

110

○ ○

Example 12 Consider the following program segment.

In this program, lines 30 and 40 will be
repeated as long as X is less than 10. Line
30 is to increase X by 1. Line 40 is to find
the sum of X. Since X changes from 1 to
10, this program is to find the sum of 1 + 2
+ ... + 10. The output is expected to be 55.

10 S ← 0

20 X ← 0

30 X ← X + 1

40 S ← S + X

50 IF X < 10 THEN

60 GOTO 30

70 END IF

80 OUTPUT S

Output S

START

END

X < 10 ?
yes

no

S 0
X 0

X X + 1
S S + X

After line 50 Result of X Result of S Condition in line 30 Action

1st time 1 1 satisfied (1 < 10) GOTO 30

2nd time 2 3 satisfied (2 < 10) GOTO 30

3rd time 3 6 satisfied (3 < 10) GOTO 30

4th time 4 10 satisfied (4 < 10) GOTO 30

5th time 5 15 satisfied (5 < 10) GOTO 30

6th time 6 21 satisfied (6 < 10) GOTO 30

7th time 7 28 satisfied (7 < 10) GOTO 30

8th time 8 36 satisfied (8 < 10) GOTO 30

9th time 9 45 satisfied (9 < 10) GOTO 30

10th time 10 55 not satisfied (10 = 10) OUTPUT S

Fig.19 Iteration for ten times

Chapter 16 Programming Concepts

111

○ ○

16.5 The For-loop

Examples 11 and 12 demonstrate iterations for a number of times. This
can be replaced by a simpler method: for-loop. The format of the for-loop isA for loop carries out

iterations for a number
of times.

Example 13 The following program is designed to find the sum
of 12 + 22 + 32 + 102.

If the keyword STEP is omitted, the step is 1.

Consider the following example:

10 FOR X = 1 to 10

20 OUTPUT X

30 NEXT

As X changes from 1 to 10, the program will
output 1, 2, 3, 10.

Output S

START

END

X < 10 ?
yes

no

X 0
S 0

X X + 1

S S + X*X

FOR {variable} = {initial value} TO {final value}
{actions to be repeated}

NEXT

FOR {variable} = {initial value} TO {final value} STEP {step}
{actions to be repeated}

NEXT

Output X

START

END

X < 10 ?

yes

no

X X + 1

X 0

10 S ← 0

20 FOR X = 1 TO 10

30 S ← S + X * X

40 NEXT

50 OUTPUT S

Fig.20 A For-loop iterating for ten times

Fig.21 Finding sum of square of integers
from 1 to 10

Basic Programming Concepts

112

○ ○

Example 15 The following program will output the square of the
even numbers between 2 and 10 inclusively. i.e. 22,
42, 62, 82, 102.

Example 14 The following program is designed to find the sum of

21 + 22 + 23 + 210.

Output S

START

END

X < 10 ?

yes

no

X 0
S 0
P 0

X X + 1

P P * 2
S S + P

10 S ← 0

20 P ← 1

30 FOR X = 1 TO 10

40 P ← P * 2

50 S ← S + P

60 NEXT

70 OUTPUT S

This is equivalent to

The outputs from the program are 4, 16,
36, 64, 100.

Output X*X

START

END

X < 10 ?
yes

no

X 0

X X + 2

10 FOR X = 2 TO 10 STEP 2

20 OUTPUT X * X

30 NEXT

10 X ← 0

20 X ← X + 2

30 OUTPUT X * X

40 IF X < 10 THEN

50 GOTO 20

30 END IF

Fig.22 Finding sum of 2 to the power from 1 to 10

Fig.23 The squares of even numbers from 2 to 10

Chapter 16 Programming Concepts

113

○ ○

Example 16 The following program will input 10 positive numbers
and determine the largest one.

Line 10 assigns -1 to the variable MAX.
Line 40 compares the input data with MAX. If
the input data is larger, then it would replace the
contents of MAX.

16.6 The Repeat ... Until-loop

The format of the Repeat .. until loop is

REPEAT
{actions to repeat}

UNTIL {condition is satisfied}

A Repeat...until loop will
take place at least once.

Input X

Output MAX

START

END

X > MAX ?

I < 10 ?

yes

yes

no

no

MAX -1
I 0

I I + 1

MAX X

10 MAX ← -1
20 FOR I = 1 TO 10
30 INPUT X
40 IF X > MAX THEN
50 MAX ← X
60 ENDIF
70 NEXT
80 OUTPUT MAX

Condition
satisfied?

yes

no

Action to
repeat

Input X

START

END

X > 0 ?

yes

no

10 REPEAT

20 INPUT X

30 UNTIL X > 0

The actions inside the loop will take place at least once.
Consider the following example:

This program segment will input a data. If the input is not greater than 0,
the computer will ask for input again. This ensures that the input is positive. It
is equivalent to the following:

10 INPUT X
20 IF NOT (X > 0) THEN
30 GOTO 10
40 END IF

Fig.24 Finding maximum

Fig.25 Repeat...until loop

Fig.26 Ensuring non-negative input

Basic Programming Concepts

114

○ ○

16.7 The While-loop

 The format of the while-loop is

WHILE {condition is satisfied}
{actions to repeat}

END WHILE

A while-loop may or may
not take place.

Example 17 The following program will find out how many consecutive
integers starting from 1 are needed to make up a sum of at
least 10.

It is equivalent to the following:

10 S ← 0
20 C ← 0
30 REPEAT
40 C ← C + 1
50 S ← S + C
60 UNTIL S >= 10
80 OUTPUT C

After executing
line 60

C S Repeat or not

1st time 1 1 Yes
2nd time 2 3 Yes
3rd time 3 6 Yes
4th time 4 10 No

10 S ← 0
20 C ← 0
30 C ← C + 1
40 S ← S + C
50 IF NOT (S >= 10) THEN
60 GOTO 30
70 END IF
80 OUTPUT C

Output C

START

END

S >= 10 ?

yes

no

S 0
C 0

C C + 1
S S + C

Condition
satisfied?

yes

no

Action to
repeat

The actions inside the loop may
or may not take place.

Fig.27 Application of
Repeat ... until

Fig.28 Iteration control structure:
The While loop

Chapter 16 Programming Concepts

115

○ ○

This program segment will input a data. If the input is not
greater than 0, the computer will ask for input again. This
ensures that the input is non-negative. It is equivalent to the
following:

It is equivalent to the following:

Example 18 The following program will find out the remainder when a posi-
tive number is divided by another.

Input X

Input X

START

END

X < 0 ?
yes

no

Fig.29 Ensuring non-negative input

10 INPUT X
20 IF X < 0 THEN
30 INPUT X
40 GOTO 20
40 END IF

10 INPUT N
20 INPUT DIVISOR
30 WHILE N >= DIVISOR
40 N ← N - DIVISOR
50 END WHILE
60 OUTPUT N

10 INPUT X
20 WHILE X < 0
30 INPUT X
40 END WHILE

Consider the following example:

Output N

START

END

N > divisor ?

yes

no

N N - divisor

Input N,
divisor

10 INPUT N
20 INPUT DIVISOR
30 IF N >= DIVISIOR THEN
40 N ← N - DIVISOR
50 GOTO 30
60 END IF
70 OUTPUT N

Fig.30 Using a while-loop to find
the remainder

Basic Programming Concepts

116

○ ○

1. A variable is a memory location that holds data. An assignment statement assigns value
to a variable, overwriting its contents.

2. A computer always follows the proper order of precedence as we do mathematics.

3. An input statement allows user to change the value of a variable interactively; an output
statement puts the value on the screen.

4. A conditional statement will carry out an action if a specific condition is met. The
condition is tested using a conditional expression that includes relational operators, such
as =, <>, >, <, >= and <=. The result of a conditional expression is a Boolean value:
either true or false. The Boolean operators that work on two Boolean values are AND,
OR and NOT.

5. A branching statement will change the sequence of execution using GOTO command.

6. Iterations mean repeating a sequence of instruction for a specified number of times or
under certain conditions. Constructs include: For-loop, Repeat ... until-loop and While-
loop.

7. A Repeat ... until-loop will take place at least once. A While-loop may or may not take
place.

If the number (N) is 15 and the divisor is 4, the program
will subtract the number by 4 for 3 times i.e. perform 15 - 4 - 4
-4 = 3. If the number is 3 and the divisor is 4, the program will
not perform any subtraction and the remainder is 3.

Since a repeat...until-loop will perform the task at least
once. If the while-loop is replaced by a repeat...until-loop as
follows, it will lead to a logical error in case the divisor is
greater than the number.

Continued Example 18

10 INPUT N
20 INPUT DIVISOR
30 REPEAT
40 N ← N - DIVISOR
50 UNTIL N < DIVISOR
60 OUTPUT N

Output N

START

END

yes

no
N < divisor ?

N N - divisor

Input N,
divisor

Fig.31 Logical error may result if a Repeat...until-
loop is used to find the remainder

For instance, if N is 3 and the
divisor is 4, line 40 will be executed. As
a result, it will give -1 as the remainder.

Chapter 16 Programming Concepts

117

○ ○

Multiple Choice Questions

1. Which of the following statements consist of syntax errors?
(1) x + 1 ← 4
(2) x ← 5 + 8 * 2
(3) x ← "5" + 5

A. (1) only
B. (3) only
C. (1) and (3) only
D. (2) and (3) only

2. A conditional statement consists of
A. IF ... THEN
B. assignment statement
C. GOTO
D. WHILE

3. An iteration statement may consist of
(1) REPEAT .. UNTIL
(2) WHILE .. END WHILE
(3) FOR .. NEXT

A. (1) only
B. (3) only
C. (1) and (2) only
D. (1), (2) and (3) only

4. An input statement
(1) must consist of at least one variable
(2) is used with an output statement
(3) must not be used in a FOR loop

A. (1) only
B. (3) only
C. (1) and (2) only
D. (2) and (3) only

5. Which of the following will give a true result?
A. (X > X + 5) AND (1 > 2)
B. (3 > -7) OR (-7 > 3)
C. (5 >= 5) AND (4 >= 5)
D. (7+3 < 8) OR (-7 > -6)

1. C
2. A
3. D
4. A
5. B
6. D
7. D
8. C
9. B
10. C

Basic Programming Concepts

118

○ ○

6. Consider the following program:
10 X ← 3
20 Y ← 2
30 Z ← X
40 Y ← Z
50 X ← Z

After execution, the contents of the variables are
X Y Z

A. 2 2 2
B. 2 3 2
C. 3 2 3
D. 3 3 3

7. Consider the following program:

10 INPUT X
20 IF X > 5 THEN
30 X ← 5
40 ENDIF

The purpose of the program is to
A. allow 5 to be entered only
B. allow numbers less than or equal to 5 to be entered only
C. ensure that the value of X is greater than 5
D. ensure that the value of X is less than or equal to 5

8. How many times will the following For-loop iterate?

100 FOR I = 6 TO 10
..

900 NEXT

A. 0
B. 4
C. 5
D. 6

9. How many times will the following While-loop iterate?

110 I ← 6
120 WHILE I < 10
..

900 I ← I + 1
910 END WHILE

A. 0
B. 4
C. 5
D. 6

Chapter 16 Programming Concepts

119

○ ○

10. How many times will the following Repeat..Until-loop iterate?
110 I ← 6
120 REPEAT

..
900 I ← I + 1
910 UNTIL I > 10

A. 0
B. 4
C. 5
D. 6

Conventional Questions

1. Consider the following program segments:

(a)
10 P ← 1
20 R ← 8
30 Q ← P + 3
40 P ← Q
50 R ← P

(b)
10 P ← 3
20 Q ← 4
30 R ← P + 5
40 P ← P - 2
50 Q ← R + 3

(c)
10 P ← -2
20 Q ← 3
30 R ← P * (-4)
40 P ← R / 2
50 Q ← Q * (-5)

For each case, determine the values of P, Q and R after execution.

2. Consider the following program segments:

For each case, determine the values of P and Q after execution.

3. Consider the following program segments:

(a)
10 P ← 6
20 Q ← 2
30 P ← P + Q
40 Q ← Q - P
50 P ← P + Q

(b)
10 P ← 4
20 Q ← 6
30 P ← P * Q
40 Q ← Q / P
50 P ← P / Q

(c)
10 P ← 12
20 Q ← 6
30 P ← P - Q
40 Q ← Q * P
50 P ← P + Q

For each case, determine the values of S after execution.

(a)
10 X ← 10
20 S ← 100
30 IF X < 2 THEN
40 S ← S - 10
50 ELSE
60 S ← S + 10
70 ENDIF

(b)
10 X ← 10
20 S ← 100
30 IF 2*X < 15 THEN
40 S ← S / 10
50 ELSE
60 S ← S * 10
70 ENDIF

(c)
10 S ← 10
20 S ← S / 2
30 IF S/2 > 2.5 THEN
40 S ← S / 2
50 ELSE
60 S ← S * 2
70 ENDIF

1. (a) P = 4, Q = 4, R = 4 (b)
P = 1, Q = 11, R = 8 (c) P =
4 , Q = -15, R = 8

2. (a) P = 2, Q = -6 (b) P =
96, Q = 0.25 (c) P = 42 , Q
= 36

3. (a) 110 (b) 1000 (c) 10

Basic Programming Concepts

120

○ ○

 4. Fill in the following program to make it reasonable:

10 INPUT X
20 IF _______ THEN
30 OUTPUT "X is positive"
40 ELSE
50 IF _______ THEN
60 OUTPUT "X is zero"
70 ELSE
80 OUTPUT "X is negative"
90 END IF
100 END IF

5. The following program calculates the salary tax for a given net chargeable income X.
The tax to be paid is put in T.

120 INPUT X
130 IF X < 35000 THEN
140 T ← X * 0.02
150 ELSE
160 IF X < 70000 THEN
170 T ← 700 + (X - 35000) * 0.07
180 ELSE
190 IF X < 105000 THEN
200 T ← 3150 + (X - 70000) * 0.12
210 ELSE
220 T ← 7350 + (X - 105000) * 0.17
230 ENDIF
240 ENDIF
250 END IF

Determine the salary tax if the net chargeable income is
(a) 10,000
(b) 50,000
(c) 90,000
(d) 150,000

6. Determine the number of 1's printed in each of the following programs:

(a)
10 X ← 0
20 OUTPUT 1
30 X ← X + 1
40 IF X <= 5 THEN
50 GOTO 20
60 ENDIF

(b)
10 X ← 1
20 OUTPUT 1
30 X ← X + 1
40 IF X < 5 THEN
50 GOTO 20
60 ENDIF

(c)
10 X ← 1
20 IF X < 5 THEN
30 X ← X + 1
40 OUTPUT 1
50 GOTO 20
60 ENDIF

 4. 20 IF X > 0 THEN

50 IF X = 0 THEN
5. (a) 200 (b) 1750 (c)

5550(d) 15000
6. (a) 6 (b) 4 (c)

4

Chapter 16 Programming Concepts

121

○ ○

7. Determine the output of the following program:

10 S ← 100
20 X ← 10
30 S ← S - X
40 X ← X * 2
50 IF S > 0 THEN
60 GOTO 30
70 ELSE
80 OUTPUT S, X
90 END IF

8. Determine the output of the following programs:
(a)

10 X ← 2
20 FOR I = 2 TO 8
30 X ← X + 3
40 NEXT
50 OUTPUT X

(b)
10 X ← 2
20 REPEAT
30 X ← X + 3
40 UNTIL X > 20
50 OUTPUT X

(c)
10 X ← 2
20 WHILE X < 20
30 X ← X + 3
40 END WHILE
50 OUTPUT X

9. Consider the program flowchart on the right hand side:

(a) Write a program segment for the
process "Swap X and Y".

(b) Determine the output of the
flowchart.

10. Write a program to determine the mini-
mum value of ten numbers inputted from
the keyboard. You may assume that the
numbers are all less than 100.

Output X, Y

START

END

I < 5 ?
yes

no

Swap X and Y

X 3

Y 4

I 1

I I + 1

7. -50, 160
8. (a) 23 (b) 23 (c)

23

9. (a) Z ← X; X ← Y; Y ←
Z
(b) 3, 4

10. 10 MIN ← 100
20 FOR I = 1 TO 10
30 INPUT X
40 IF X < MIN
THEN
50 MIN ← X
60 ENDIF
70 NEXT
80 OUTPUT MIN

Basic Programming Concepts

122

○ ○

11. What are the outputs from the following program flowchart?

Output X, Y

START

END

X > Y?

yes

no

X 5

Y 16

Y Y - X

12. Consider the following program flowchart:

State the output from the program if the inputs are
(a) 10, 20, 60, 10, 20
(b) 120, 130, -2, 200

Output S

START

END

X > 50?

S > 100?

yes

yes

no

no

S S + X

S 0

X 50

Input X

11. X: 5 Y: 1
12. (a) 110

(b) 148

