P.O.C.A. WONG SIU CHING SECONDARY SCHOOL PURE MATHEMATICS ALGEBRA : SYMBOLIC LOGIC ASSIGNMENT 1

Ι	Date	Name	Grade / Score
			/15

1. Complete the following Truth Table of the iterated composition $(\sim p \land r) \rightarrow ((q \leftrightarrow \sim r) \lor p)$.

(5 marks)

р	q	r	$(\sim p \land r) \rightarrow ((q \leftrightarrow \sim r) \lor p)$
Т	Т	Т	
Т	Т	F	
Т	F	Т	
Т	F	F	
F	Т	Т	
F	Т	F	
F	F	Т	
F	F	F	

2. Prove the *De Morgan's Law* : $\sim (p \lor q) \equiv \sim p \land \sim q$.

(4 marks)

3. Let p and q be any statements. Prove that every truth function of the indeterminates p and q is an iterated composition of negation and disjunctions. (Hint : of the sixteen distinct truth functions in the indeterminates p and q, eight are given below; the rest are their negations. (6 marks)

р	q	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8
Т	Т	Т	Т	Т	Т	F	Т	Т	Т
Т	F	Т	Т	Т	F	Т	Т	F	F
F	Т	Т	Т	F	Т	Т	F	F	Т
F	F	Т	F	Т	Т	Т	F	Т	F

Now $f_1 \equiv (\sim p) \lor p$ and $f_2 \equiv p \lor q$.