P.O.C.A. WONG SIU CHING SECONDARY SCHOOL PURE MATHEMATICS ALGEBRA : MATHEMATICAL INDUCTION ASSIGNMENT 3

Date	Name	Grade / Score
		/15

- 1. Let us consider the following problem about the population of rabbits. Let a_n be the number of pairs of rabbits in the *n*th month. We also assume that $a_1 = 1$, that is there is a pair of young rabbits in the first month. We are known that the initial pair of rabbits gave birth to a new pair of rabbits per month, and that after two months each new pair behaved similarly.
 - (a) Write down the number of pairs of rabbits in the first ten months. (2 marks)
 - (b) Find a relation between a_n , a_{n-1} and a_{n-2} for $n \ge 3$.

(2 marks)

(c) Show by induction that $a_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$, where $\alpha > \beta$ are the roots $x^2 - x - 1 = 0$. (5 marks) This second discussed has *Eibennesi* (1175-1250) is second time with a mathematical state.

This sequence was discovered by *Fibonacci (1175-1250)* in connection with a problem about rabbits. This sequence was so-called the *Fibonacci sequence*.

- 2. Let P(n) and Q(n) be two propositions involving positive integers *n* satisfying :
 - (1) P(1) is true,
 - (2) if P(n) is true for some positive integer *n* then Q(n) is also true, and
 - (3) if Q(n) is true for some positive integer *n* then Q(n+1) is also true.

Find the set of values of n so that P(n) is true and the set of values of n so that Q(n) is true. Explain briefly.

(3 marks)

- 3. Let P(m, n) be proposition involving positive integers *m* and *n* satisfying the following properties :
 - (1) P(1,n) is true for all positive integer n,
 - (2) P(m,1) is true for all positive integer m, and
 - (3) if P(i, j+1) and P(i+1, j) are true for some positive integer *i* and *j* then P(i+1, j+1) is also true.

Find the set of values of (m, n) so that P(m, n) is true. Explain briefly.

(3 marks)