P.O.C.A. WONG SIU CHING SECONDARY SCHOOL PURE MATHEMATICS ALGEBRA I : BINOMIAL THEOREM ASSIGNMENT 5

Date	Name	Grade / Score
		/15

Let
$$(1 + x + x^2)^n = \sum_{k=0}^{2n} a_k x^k$$
.
(a) Evaluate
(i) $\sum_{k=0}^{2n} a_k$.
(ii) $\sum_{k=0}^{2n} (-1)^k a_k$.
(iii) $\sum_{k=0}^n a_{2k}$ and $\sum_{k=1}^n a_{2k-1}$.

(iv)
$$\sum_{k=1}^{2n} k a_k \; .$$

1.

(b) Replacing x by
$$\frac{1}{x}$$
, show that $a_{2n-k} = a_k$.

(2 marks)

(c) Using the identity
$$(1 + x + x^2)^n (1 - x + x^2)^n = (1 + x^2 + x^4)^n$$
 and (b), show that $\sum_{k=0}^{2n} (-1)^k a_k^2 = a_n$.
(4 marks)

(5 marks)

(d) By considering the expansion of $(1-x^3)^n$, find the value of $\sum_{k=0}^r (-1)^k \binom{n}{k} a_{r-k}$, for the case *r* is not a multiple of 3 and the case if r = 3m for some positive integer *m*. (4 marks)