P.O.C.A. WONG SIU CHING SECONDARY SCHOOL

PURE MATHEMATICS
ALGEBRA : THEORY OF EQUATIONS
ASSIGNMENT 7

Date	Name	Grade / Score
		$/ 15$

1. Let $f(x)=x^{4}+8 x^{3}+23 x^{2}+26 x+7$ and $g(x)=f(x+k)$ where $k \in \mathbf{R}$.
(9 marks)
(a) Find k such that the coefficient of x^{3} in $g(x)$ is zero. Find also $g(x)$
(b) Suppose $g(x)=\left(x^{2}+p x+q\right)\left(x^{2}+r x+s\right)$ where $p, q, r, s \in \mathbf{R}$. By comparing coefficients or otherwise, show that $p^{6}-2 p^{4}+5 p^{2}-4=0$. Hence find p, q, r, s.
(c) Find all the roots of $f(x)=0$.
2. Let $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}\left(a_{0} \neq 0\right)$ be a polynomial with integral coefficients. (6 marks)
(a) If d is an integral root of the polynomial $f(x)$, show that for any integer $m, m-d$ is a factor of $f(m)$. (Hint: $f(m)=f(m)-f(d))$.
(b) Use (a) to show that if $f(0)$ and $f(1)$ are both odd numbers, then $f(x)$ has no integral root
