P.O.C.A. WONG SIU CHING SECONDARY SCHOOL

PURE MATHEMATICS

ALGEBRA : ALGEBRAIC INEQUALITIES
ASSIGNMENT 9B

Date	Name	Grade / Score
		$/ 15$

1. (a) Let $x>0$ and k be a positive integer. Prove that

$$
(k+1)(x-1) \leq x^{k+1}-1 \leq(k+1) x^{k}(x-1),
$$

and that the equality holds if and only if $x=1$.
(b) Hence, prove that, if $y>1$ then $y^{k+1}-(y-1)^{k+1}<(k+1) y^{k}<(y+1)^{k+1}-y^{k+1}$. (Hint : Put $x=\frac{y}{y-1}$ and then $x=\frac{y+1}{y}$).
(c) Deduce that $\frac{n^{k+1}}{k+1}<1^{k}+2^{k}+\cdots+n^{k}<\frac{(n+1)^{k+1}-1}{k+1}$
2. Let x, y be two positive real numbers and m, n two positive integers. Prove that

$$
x^{m} y^{n}+x^{n} y^{m} \leq x^{m+n}+y^{m+n},
$$

and that the equality holds if and only if $x=y$.

