P.O.C.A. WONG SIU CHING SECONDARY SCHOOL PURE MATHEMATICS CALCULUS : INFINITE SEQUENCES ASSIGNMENT 11A

Date	Name	Grade / Score
		/15

- 1. Let $\{a_n\}$ and $\{b_n\}$ be two sequences.
 - (a) Give a counter example to verify that the following statement may not be true. "If $\lim_{n \to \infty} a_n$ and $\lim_{n \to \infty} b_n$ do not exist then $\lim_{n \to \infty} a_n b_n$ does not exist."

(b) Prove that if $\lim a_n = l$, where $l \neq 0$, and $\lim b_n$ does not exist then $\lim a_n b_n$ does not exist.

(c) Find two sequences $\{a_n\}$ and $\{b_n\}$ so that $\lim a_n = 0$, $\lim b_n$ does not exist but $\lim a_n b_n$ exists.

(d) Find two sequences $\{a_n\}$ and $\{b_n\}$ so that $\lim a_n = 0$, $\lim b_n$ does not exist but $\lim a_n b_n$ do not exist.

$\lim_{n\to\infty}a_n=$	$\lim_{n\to\infty}b_n=$	<i>c</i> _{<i>n</i>} =	$\lim_{n\to\infty}c_n =$
+∞	b	$a_n + b_n$	
-∞	b	$a_n + b_n$	
+∞	+∞	$a_n + b_n$	
-∞	-∞	$a_n + b_n$	
+∞	+∞	$a_n - b_n$	
-∞	-∞	$a_n - b_n$	
+∞	<i>b</i> > 0	$a_n b_n$	
+∞	<i>b</i> < 0	$a_n b_n$	
+∞	+∞	$a_n b_n$	
+∞	-∞	$a_n b_n$	
-∞	<i>b</i> > 0	$a_n b_n$	
-∞	<i>b</i> < 0	$a_n b_n$	
-∞	-∞	$a_n b_n$	
+∞	0	$a_n b_n$	
-∞	0	$a_n b_n$	
а	+∞	a_n/b_n	
+∞	+∞	a_n/b_n	
+∞	0	a_n/b_n	
0	0	a_n/b_n	