P.O.C.A. WONG SIU CHING SECONDARY SCHOOL PURE MATHEMATICS CALCULUS : INFINITE SEQUENCES ASSIGNMENT 11B

Date	Name	Grade / Score
		/15

1. Let a_1, b_1, c_1 be positive numbers whose sum is 1 and for $n \ge 1$, define

$$\begin{cases} a_{n+1} = a_n^2 + 2b_n c_n \\ b_{n+1} = b_n^2 + 2c_n a_n , \\ c_{n+1} = c_n^2 + 2a_n b_n \end{cases}$$

where $a_n \ge b_n \ge c_n$.

(a) Show that $a_n + b_n + c_n = 1$ for all $n \ge 1$.

(4 marks)

(2 marks)

(b) Show that $\{a_n\}$ is decreasing and $\{c_n\}$ is increasing.

(c) Show that $a_{n+1} - c_{n+1} \le (a_n - c_n)^2$, for $n \ge 1$. Hence deduce that $a_{n+1} - c_{n+1} \le (a_1 - c_1)^{2^n}$.

(d) Show that $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ all converge to a same limit. Find this limit.

(5 marks)