P.O.C.A. WONG SIU CHING SECONDARY SCHOOL
 PURE MATHEMATICS
 CALCULUS:INFINITE SEQUENCES
 ASSIGNMENT 11B

Date	Name	Grade / Score
		$/ 15$

1. Let a_{1}, b_{1}, c_{1} be positive numbers whose sum is 1 and for $n \geq 1$, define

$$
\left\{\begin{array}{l}
a_{n+1}=a_{n}{ }^{2}+2 b_{n} c_{n} \\
b_{n+1}=b_{n}{ }^{2}+2 c_{n} a_{n}, \\
c_{n+1}=c_{n}{ }^{2}+2 a_{n} b_{n}
\end{array}\right.
$$

where $a_{n} \geq b_{n} \geq c_{n}$.
(a) Show that $a_{n}+b_{n}+c_{n}=1$ for all $n \geq 1$.
(2 marks)
(b) Show that $\left\{a_{n}\right\}$ is decreasing and $\left\{c_{n}\right\}$ is increasing.

Hence deduce that $a_{n+1}-c_{n+1} \leq\left(a_{1}-c_{1}\right)^{2^{n}}$.
(d) Show that $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ all converge to a same limit.

Find this limit.

